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Abstract. We tested the efficacy of three empirical cor-
rection schemes on atomization energies calculated by
the following theories: Kohn—Sham density functional
theory (KS-DFT) with local spin density approximation
(LSDA), two KS-DFT gradient-corrected methods, one
hybrid Hartree-Fock/KS-DFT method similar to
B3LYP, and the ab initio extrapolation procedures G1
and G2. Empirical corrections improved the LSDA
results greatly, while the other theories were improved
slightly or not at all. The best procedure for correcting
LSDA atomization energies brings the mean absolute
deviation from experiment from 38.3 to 4.0 kcal/mol on
a subset of 44 molecules in the G1 dataset that were not
used in deriving the empirical parameters. This corrected
LSDA is interesting for three reasons: it could be a
useful computational tool in some cases, it implies that
the LSDA itself gives accurate energies for reactions
where atomic coordinations stay unchanged, and it gives
insight into the search of better functionals.

Keywords: Local spin density — Thermochemistry —
Empirical corrections — Functionals

1 Introduction

The local spin density approximation (LSDA) [1, 2, 3] is
the starting point for almost all exchange—correlation
functionals used in Kohn—Sham (KS) density functional
theory (DFT) [4]. The LSDA is notorious for its poor
accuracy on bond energies, but it is remarkably good for
molecular properties that depend only on small regions
of the potential-energy surface near minima such as
equilibrium geometries [5] and harmonic vibrational
frequencies [6]. This suggests that the LSDA gives a
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rather good description of molecules, but a poor
description of atoms, and that errors in LSDA atom-
ization energies could largely be removed by a simple
shift of reference atomic energies [7]. We tested this idea,
and two other types of empirical corrections, for the
LSDA and five other methods — two gradient-corrected
DFTs, a hybrid Hartree—-Fock/DFT, and two ab initio
extrapolation schemes.

The so-called G1 dataset [8] includes 55 small mole-
cules of main group elements (Z < 18) with accurately
known atomization energies. It has become a standard
reference for assessing different theories for thermo-
chemistry. The atomization energy of a molecule, which
we denote by Dy, is a fundamental quantity for ther-
mochemistry. A possible estimation of the accuracy of a
theory is given by the mean absolute deviation (MAD)
of its predicted Dy from the highly accurate experimental
values of the Gl dataset. The MAD for LSDA, for
instance, is 36 kcal/mol—unacceptably large for typical
applications.

The failures of the LSDA in thermochemistry were
recognized early on, and much effort went into devising
improved exchange—correlation functionals giving better
energies. Becke’s 1992 papers [9, 10] were very impor-
tant, as they showed that gradient-corrected functionals
can give MADs from the Gl dataset experimental
atomization energies of 4-6 kcal/mol [10]. Such gener-
alized gradient approximation (GGA) functionals are
now better understood, and they have been refined and
simplified, see, for example, Ref. [11]. Shortly after,
Becke obtained an even more accurate functional, with a
MAD of only 2.4 kcal/mol, by mixing exact Hartree—
Fock exchange with a DFT exchange—correlation func-
tional [12]. Some of the newer functionals use the orbital
kinetic energy density and can deliver high accuracy even
though they contain no Hartree-Fock exchange contri-
bution and few adjustable parameters. For instance, one
functional by Perdew et al. [13] has only two adjustable
parameters and gives a MAD of 3.1 kcal/mol on a set of
20 atomization energies. Other DFT methods achieve
higher accuracy but at the cost of increased complexity
and the introduction of many adjustable parameters
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[14]. Some quantum chemical methods extrapolate
energies from sequences of ab initio calculations in
which the basis set and description of electron correla-
tion get progressively more complete. Such methods
yield extremely accurate results, with MADs ranging
from 1 to 2 kcal/mol [8, 15, 16, 17]. However, they are
significantly more costly in computing time, and the
theory underlying them does not perform as well for
transition-metal elements as it does for the light elements
that are predominant in test datasets. There is contin-
uing interest in trying to improve the accuracy of DFT
methods because they are computationally more efficient
than conventional ab initio methods and their accuracy
for systems with heavier elements is encouraging.

A quick look at Dy from experiment and from LSDA
calculations (see Ref. [9] or Table 1) shows simple

Table 1. Local spin density approximation (LSDA) atomization
energies Dy (kcal/mol) without and with corrections of Egs. (8) and
®

Molecule Expt LSDA LSDA-c2 LSDA-c3
CH 79.9 88.6 50.7 68.8
CH, triplet 179.6 202.4 162.7 173.2
CH,; singlet 170.6 188.9 149.2 159.7
CH; 289.2 321.7 280.1 285.0
CH,4 392.5 435.5 392.1 392.1
NH 79.0 91.0 54.6 69.2
NH, 170.0 196.5 158.2 164.6
OH 101.3 119.1 86.5 95.5
Li, 24.0 23.0 21.1 21.1
LiF 137.6 154.2 133.7 133.7
CH, 388.9 443.6 367.9 389.0
C,Hy 531.9 601.7 522.3 531.9
CN 176.6 217.4 146.9 179.4
HCN 301.8 351.1 278.7 303.8
CO 256.2 296.1 229.4 256.4
HCO 270.3 325.1 256.6 276.1
H,CO 357.2 417.6 347.2 361.0
CH;0H 480.8 555.4 481.3 481.3
N, 225.1 264.6 195.5 224.7
N,H,4 405.4 483.8 407.3 407.3
NO 150.1 196.3 131.1 154.6
0, 118.0 172.5 111.1 129.1
H,0, 2523 318.9 253.8 253.8
F, 36.9 76.7 37.6 37.6
CO, 381.9 466.2 368.8 397.3
SiH, singlet 144.4 159.2 136.5 142.1
SiH, triplet 123.4 139.5 116.8 122.4
SiH; 214.0 233.6 209.0 211.6
SiHy 302.8 327.9 301.5 301.5
PH, 144.7 165.7 139.7 149.1
Siy 74.0 92.8 54.8 73.8
P, 116.1 143.1 98.4 117.3
S, 100.7 134.6 93.8 105.8
Cl, 57.2 82.8 58.3 58.3
NacCl 97.5 102.8 88.8 88.8
SiO 190.5 2227 173.0 191.5
CS 169.5 200.6 144.2 168.2
SO 123.5 166.4 1153 130.3
ClO 63.3 104.0 61.0 70.0
CIF 60.3 94.3 62.5 62.5
CH;Cl 371.0 424.7 370.9 370.9
CH;SH 445.1 508.5 444.7 444.7
HOCI 156.3 203.2 158.4 158.4
SO, 254.0 332.8 251.0 269.0

trends, for instance, the LSDA almost always overesti-
mates atomization energies. Although the LSDA values
of Dy are very poor in absolute terms, they look rather
good in a relative sense and there could be simple cor-
rections that bring them in much better agreement with
experiment. The purpose of this article is to discuss the
relative accuracy of different theories for predicting D
and to assess how different empirical corrections may
help improve theoretical methods. From our results
(Section 3) it appears that the LSDA is a much better
theory than is generally acknowledged, and that the
LSDA may even be a reasonable choice for certain kinds
of thermochemical calculations.

Kristyan et al. [18, 19] recently proposed empirical
corrections to Hartree—Fock energies that greatly im-
prove calculated atomization energies. The kind of
empirical corrections that we consider here are different
from theirs in many ways. Our starting point is the LSDA
instead of Hartree—Fock, but we also examined the effect
of corrections to higher levels of theory. Our corrections
involve only one parameter per element and they depend
only on molecular geometry, not on atomic charges [18,
19] or other information derived from orbitals or electron
density. We did not restrict our tests to closed-shell
molecules: we looked at open-shell molecules and find
that they give the largest errors but also some valuable
insight. Finally, our corrections (Egs. 7, 8, 9) are
designed so that they become exactly zero for a certain
class of reactions. Therefore, the performance of cor-
rected theories on atomization energies gives a sense for
the expected accuracy of uncorrected theories for ener-
gies of reactions where the corrections are exactly zero.

2 Empirical corrections

We compared six theories with experiment on the basis
of the atomization energy Dy of molecules in the Gl
dataset [8]: the LSDA [3]; the Bx exchange-only
functional of Becke [20]; the same functional with the
gradient corrections of Perdew and Wang to correlation
[21] added, which we denote BPW; the three-parameter
hybrid functional B3PW of Becke [12], which calculates
the exchange energy as a sum of Hartree—Fock and DFT
contributions and is very similar to the popular B3LYP
functional; and the ab initio based extrapolation proce-
dures G1 and G2. There are many more computational
methods, to be sure, but the ones considered here are a
representative sample of practical methods used for
thermochemical calculations. We took atomization
energies previously published [8, 9, 12, 15]. The DFT
calculations were done with the basis-set-free program
NUMOL [9, 10], and the Gl and G2 results are
extrapolations based on several calculations [§8, 15]. In
all cases, the results correspond to a nearly complete
basis set treatment and have a very small numerical
uncertainty. In each case we compared theoretical values
(y;) with experimental ones (x;) by calculating deviations
d; = y; — x; and relative deviations ¢; = (y; — x;)/x;. We
calculated the following measures of accuracy:

Bias = mean(d;) (1)



MAD = mean(|d;|) ,

RMSD = [mean(d?)]'/? |
rMAD = 100 x mean(|J;]) ,
rRMSD = 100 x [mean(éf)}l/2 )

B = (RMSD — |bias|)/MAD . (6

The MAD is what is most often quoted in the literature.
The root-mean-square deviation (RMSD) is more sen-
sitive to the presence of a few large deviations. The
rMAD and rRMSD, expressed as percentages, are
similar to MAD and RMSD, respectively, but they
magnify the effect of errors on molecules with a smaller
Dy. We must always have |bias| < MAD < RMSD, and
the limit case |bias| = MAD = RMSD(f=0) is
attained when the error is constant, which allows a
trivial correction. Generally, smaller values of f§ indicate
errors that are more systematic and easier to correct. We
considered three kinds of empirical corrections:

Do(Cl) :fD(),
£=YmA )Y o 7

Dy(c2) = Dy — ZAz(Xi) : (8)

Do(e3) = Do = _ Ay(X) x i’ . 9)

The sums in Egs. (7), (8) and (9) run over all atoms i in
the molecule, and X; identifies the element. The A’s are
the adjustable parameters of each model, with one
parameter per element. The first correction is just a
scaling by a factor f, which is a weighted average of
atomic factors A;(X;) and where the atomic coordina-
tions n; are used as weights. In the second model, the
energy of each atom is shifted by a fixed amount that
depends only on the element. In the third model, we
assume that the correction associated with an atom
depends on its environment in the molecule, and that it
goes as the square root of the coordination n; of that
atom. For the molecules considered here it is easy to
assign n; values. For arbitrary geometries one would
have to use a well-defined criterion for calculating n;.
For example, one could consider all pairs (7, j) of atoms,
and increment #; and n; by 1 whenever the distance R;;
between atoms i and j is less than ¢(R{*" + R}*¥), the sum
of their covalent radii multiplied by some constant ¢ that
is slightly larger than 1. In order to map out a potential
surface, one would need n;,’s that are continuous and
differentiable with respect to nuclear coordinates. These
practical considerations about the definition of »; are not
very important here because we look at energy differ-
ences between molecules at their equilibrium geometries
for which the n;’s are unambiguous.

We did not fit the empirical parameters A of Egs. (7),
(8) and (9) to the G1 dataset or other datasets. Instead,
we fixed the 11 parameters so as to reproduce the
experimental atomization energies of eleven closed-shell
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Table 2. Energy shift parameters A;(E;X,LSDA) of Eq. (9), in
(kcal/mol). The numbers in parentheses are from the two-parameter
fit Eq. (10)

Element X/A3;(X,LSDA) parameter

H Li C N 0 F

1.85 0.95 18.00 19.95 2171 19.55

(3.89)  (1.01)  (16.17)  (20.10)  (20.72)  (18.45)
Na Si P S cl
1.70 9.50 12.90 14.42 12.25
0.81)  (11.22)  (14.22)  (14.83)  (13.42)

molecules with formula X, H,,, except for Na, where we
took Na, because Dyg(NaH) is not known accurately.
The 11 molecules used to fix parameters are H,, LiH,
CzH(,, NH3, HzO, HF, Naz, Si2H6, st, PH3, and HCL
The Dy for H; is not reported in Ref. [15], so we as-
sumed that G1 and G2 agree perfectly with experiment
for Dy(H;) and calculated the remaining empirical
parameters as for the other methods.!

Many empirical parameters enter Egs. (7), (8) and
(9), one per element represented in the dataset, and
ultimately one for each element in the periodic table:
However, these parameters have a simple meaning and
require no fit so they can be obtained easily for any
theory and computational model (software, basis set,
etc.). Note also that these parameters follow simple
trends across the periodic table, so they can themselves
be fitted to an empirical formula having fewer parame-
ters. For example, the 11 energy shift parameters of
Eq. (9) for the LSDA (Table 2) can be fitted rather well
by a formula with two adjustable parameters:

(ni/3 + nzﬁ)
(4r/3)'°R

In Eq. (10), n, and ng are the spin up and spin down
numbers of valence electrons for the element in its
ground-state configuration, V' =min{(n, + ngp),
8 — (ny +ng)} is the valence of the atom, R is the
covalent atomic radius, and a = 0.00604 au and
b = 0.455 are fitting parameters. The MAD for the 44
test molecules is 5.8 kcal/mol in this two-parameter
model, not much more than with the underlying 11-
parameter model (4.0 kcal/mol).

The term in brackets in Eq. (10) is proportional to the
exchange energy in an ultrasimplified model of an atom
where only valence electrons are counted and the spin
densities are assumed constant inside a sphere of radius
R. One expects a relation between the magnitude of A;
and an atom’s model exchange energy. The propor-
tionality factor, aV’?, represents the lack of error can-
cellation in energy between the free atom and the atom
in the molecule, expressed as a fraction of the atom’s
model exchange energy. The dependence on V is not too
surprising: V represents the number of electrons that are
strongly affected by formation of chemical bonds.

As = al” (10)

I We get very similar results as reported here when we use CH, and
C,Hg, instead of H, and C,Hg, for obtaining the empirical
parameters of the H and C atoms for G1 and G2 theories.
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Values of Aj; calculated by Eq. (10) are shown in
parentheses in Table 2.

3 Results and discussion

We compare theory with experiment for the uncorrected
theories (LSDA, Bx, BPW, B3PW, G1, G2) and for each
theory empirically corrected using Egs. (7), (8) and (9) in
Table 3. In order to make a fair comparison, we
eliminated the 11 molecules used to derive empirical
parameters (and also BeH) from the G1 dataset. This
leaves us with a test set of 44 molecules. The bottom part
of Table 3 repeats the best empirically corrected results
for each theory. First we look at uncorrected theories at
the top of Table 3. The different measures of deviation
from experiment, including rMAD and rRMSD, give
the same ranking of theories. LSDA is by far the worst,
with errors of the order of 40 kcal/mol, or 25%.
Gradient-corrected DFT methods are much better, with
errors of roughly 7 kcal/mol and 8% for BPW and
4 kcal/mol and 4% for Bx. Mixing exact exchange with

Table 3. Different measures of accuracy (Egs.1, 2, 3, 6) of theories
compared with 44 experimental atomization energies (kcal/mol or
percent)

Theory Bias MAD RMSD p
Uncorrected
LSDA 38.3 38.3 43.6 0.1
Bx 2.3 4.0 4.7 0.6
BPW 44 6.2 7.9 0
B3PW 0.2 2.4 3.0 1.1
Gl -0.5 1.6 2.1 1.0
G2 -0.1 1.2 1.6 1.2
Corrected by Eq. (7)
LSDA 1.6 6.0 8.4 1.1
Bx 4.6 5.2 6.5 0.4
BPW 3.9 4.4 5.4 0.4
B3PW 0.0 2.4 3.1 1.3
Gl 1.0 1.8 2.4 0.8
G2 -0.5 1.3 1.8 1.0
Corrected by Eq. (8)
LSDA -11.2 11.6 15.0 0.3
Bx 9.2 9.6 11.3 0.2
BPW 2.1 3.2 4.2 0.7
B3PW -1.2 2.7 3.7 0.9
Gl 1.9 2.3 2.9 0.4
G2 -0.5 1.3 1.7 0.9
Corrected by Eq. (9)
LSDA 0.4 4.0 5.6 1.3
Bx 6.2 6.7 7.7 0.2
BPW 3.3 3.8 5.0 0.5
B3PW -0.5 2.3 3.0 1.1
Gl 1.3 1.8 2.2 0.5
G2 -0.5 1.2 1.6 0.9
Best corrected theories
LSDA-c3 0.37 3.96 5.63 1.33
Bx 2.28 3.97 4.70 0.61
BPW-c2 2.10 3.16 4.21 0.67
B3PW-c3 —-0.48 2.34 2.97 1.06
Gl —-0.49 1.55 2.06 1.01
G2-c3 —-0.46 1.22 1.60 0.93

DFT exchange—correlation (B3PW) further reduces the
error to 2.5 kcal/mol or 4%. The accuracy of Bx and
B3PW relative to BPW shows how important the
treatment of exchange is for atomization energies. The
G1 and G2 results are the most accurate, with errors of
roughly 2 kcal/mol and 2% for G1 and 1.5 kcal/mol and
1.5% for G2. The errors are much more systematic in
the LSDA than in other theories, as the small value of f
indicates. The ratios (rMAD/MAD) and (rRMSD/
RMSD) are smaller in the LSDA (0.59 and 0.66,
respectively, compared with 0.8 and 1.1 on average for
other theories), which also shows that the LSDA can be
accurate in a relative sense. In contrast, the three
theories with the lowest MAD have the largest f5.

The correction of Eq. (7) improves the LSDA a lot
(the MAD drops to 6.0 kcal/mol) but it does not im-
prove the accuracy of other theories much. Curiously,
using a single scaling parameter, fixed in a way that
eliminates the bias, decreases slightly the MAD in Bx
theory (from 4.0 to 3.8 kcal/mol). The correction of
Eq. (8) also improves the LSDA, but not as much; the
MAD decreases to 11.6 kcal/mol. Errors on atomization
energies can always be viewed as due to an incomplete
cancellation of errors in the total energies of the atoms
and the molecule. Since the LSDA gives accurate
molecular equilibrium structures and vibrational fre-
quencies, we thought that the LSDA error on Dy is
mainly due to a bad description of ground-state atoms.
This is what motivated our choice of Eq. (8), and the
large decrease in MAD with Eq. (8) (from 38 to 12 kcal/
mol) seems to support this viewpoint. However, the
corrections of Egs. (7) and (9) give even better results
than that, so LSDA errors on D, cannot simply be
ascribed to errors on atomic energies. Surprisingly,
Eq. (8) also cuts the error in BPW by a factor of almost
2. Clearly, if a chemical reaction has no atom among
products and reactants, the correction of Eq. (8) to the
energy of reaction is zero. Mean errors on energies of
reaction are not equal to mean errors on atomization
energies, but they are surely strongly correlated on
account of Hess” law. Therefore, the good accuracy of
BPW-c2 for Dy suggests that BPW, and GGA methods
generally, give better energies of reaction than the MAD
over the G1 dataset indicates, provided there is no atom
among the reactants or products.

The correction of Eq. (9) dramatically improves the
LSDA! The bias is eliminated, and the MAD and
RMSD on absolute and relative deviations decrease by
factors of 6-10. By any measure, the LSDA corrected
with Eq. (9) is nearly as good as uncorrected Bx and
BPW. More remarkable still is that the LSDA corrected
with Eq. (9) is only slightly worse (4.0 versus 3.2 kcal/
mol) than the best empirically corrected GGA. We think
it is close enough in accuracy to other DFT methods to
deserve further studies, especially in systems with heavier
atoms or metallic character where inclusion of some
Hartree—Fock exchange, as is done in B3PW, could be
detrimental.

The bottom part of Table 3 shows the best empirical
version of each theory. The ranking, in decreasing order
of deviation from experiment, is as for uncorrected
theories except that BPW-c2 gets better than Bx:



LSDA-c3 = Bx > BPW-c2 > B3PW-c3 > G1 > G2-c3.
This was expected: empirical corrections are not a sub-
stitute for a better treatment of exchange and correla-
tion; however, empirical corrections bring the accuracy
of various theories much closer to one another. The ratio
of the largest to the smallest MAD is 31 among uncor-
rected theories, and it is 3.2 among their best empirical
versions. The decrease in the error on Dy on going to
higher levels of theory is very big, but only a small
fraction of it cannot be recovered by simple empirical
corrections. If one is willing to use empirical corrections,
then computational cost and reliability for a certain
category of molecules or reactions become deciding
factors in the choice of a computational method, and
then the LSDA-c3 and BPW-c2 models look like inter-
esting alternatives.

Empirical corrections are not satisfying from a the-
oretical viewpoint, but the success of Eq. (9) with the
LSDA, in particular, has interesting implications.
Firstly, it shows the kind of situations where one can
expect the uncorrected LSDA to work well. Define atom
“type” as the combination of an element and coordi-
nation: when the number of atoms of each type stays
unchanged during a chemical reaction, corrections
Egs. (7) and (9) (and also Eq. 8) become identically
zero”. So the calculated LSDA energy change for such a
reaction should be roughly as accurate as LSDA-c3 is
for atomization energies (4 kcal/mol). Secondly, it
points to the possibility of improving the LSDA in dif-
ferent ways than the GGA approach. Nonzero density
gradients are not the only aspect by which atoms and
molecules differ fundamentally from the homogeneous
electron gas (the basic model of the LSDA): their finite
size is another. The form of Egs. (9) and (10) suggests
that a big part of the error in the LSDA comes from a
lack of error cancellation in exchange energy contribu-
tions coming from regions of space that are inside versus
outside effective surfaces bounding atoms and mole-
cules. Indeed, Becke stressed the importance for ther-
mochemistry of low-electron-density regions and devised
gradient corrections that give correct asymptotic
behavior in the exchange—correlation energy density [9].
It may be that simple functionals without density gra-
dient, but with corrections that depend on some other
variable instead, could also give accurate thermochem-
istry. One possibility might be a surface energy correc-
tion [22]; however, defining “‘surface energy” in atoms
and molecules is not simple.> Our Eq. (9) seems to
achieve roughly the same result that a functional with
correct asymptotic form, like Bx, produces in a much
more rigorous way. Thirdly, Eq. (9) could just be used as

2 For example, CH,Cl, + Hy — CHy4 + Cl,. There are also reac-
tions where the coordination of some atoms changes, but is
compensated by an opposite change of coordination on other
atoms of the same element, for example,
C,H4Cl, + C,Cly — CyHy + C,Clg.

3 For instance, one could define the surface energy of an atom or
molecule as the energy required to pull it out of a jellium of density
p (“‘embedding energy”); but then, there is considerable leeway in
how to choose p and no obvious criterion for fixing its value.
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a practical tool for estimating reaction energies when
other methods are too costly or impractical. If LSDA-c3
is to be used in that way, it is worth taking a closer look
at errors.

Experimental and corrected LSDA atomization
energies for the 44 test molecules are shown in Table 1.
LSDA-c3 is extremely accurate for many of the closed-
shell molecules but it still has deficiencies: it underesti-
mates Dy of small radicals with fewer than ten electrons
(CH, CH,, etc.); it overestimates Dy in molecules con-
taining singly coordinated oxygen or sulfur atoms. We
can achieve much better accuracy at the cost of intro-
ducing more ad hoc corrections and three more
parameters: (1) corrections for each singly coordinated
O atom (—5.55 kcal/mol) and S atom (—2.55 kcal/mol)
which make O, and S, exact; (2) a correction equal to
4.2 (10 — N;) for small radicals which makes the CHj3
radical exact. We call this last model LSDA-c4. With
these additional corrections, the MAD measured against
a reduced test set of 41 molecules (excluding CHj, O,
and S;) becomes 2.0 kcal/mol. We do not recommend
LSDA-c4 as a general method, but it might be used as an
empirical method that needs testing before applications
can be made to specific problems. The LSDA-c4 model
has too many arbitrary corrections and parameters to be
a good predictive tool. It would not be reliable for sys-
tems with ionic bonds (e.g., see LSDA-c3 errors on NaCl
and LiF in Table 1), delocalized = bonds, metal-ligand
bonds, etc., which are absent, or few, in the G1 dataset.
Nevertheless, LSDA-c4 is an interesting model. Note
that correction 1 is zero for a process where the number
of atoms of each type stays unchanged (as are correc-
tions by Egs. 7, 8, 9), and correction 2 applies only to
very small species for which high levels of theory are
feasible and DFT is typically not needed. So one could
expect the LSDA to give an accuracy even better than
4.0 kcal/mol for energies of reactions involving no light
radicals and where the number of atoms of each type
stays unchanged. The LSDA-c4 model shows that it is
quite possible to calculate energy differences to high
accuracy and at a small computational cost when
empirical corrections are used and when applications are
limited to systems with few elements and bonding
mechanisms. A modest level of theory combined with
simple corrections can be adequate for that purpose, as
was also demonstrated by Kristyan et al. [18, 19].

4 Summary and conclusions

The LSDA gives errors on atomization energies that are
large but systematic, as shown by the small  (Eq. 6, and
Table 3). Corrections calculated by Eq. (9) bring the
LSDA into much better agreement with experiment.
These corrections are never zero for atomization ener-
gies, but they are often small or zero in typical
applications of interest to chemists—energies of reactions.
From that perspective, the LSDA appears much better
than is generally stated in the literature. It may well give
mean errors of 4 kcal/mol or even less on energies of
reactions where atomic coordinations stay unchanged.
This kind of accuracy is expected for a wider class of
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reactions when using empirical corrections as in
LSDA-c3 or LSDA-c4 models. The BPW-c2 model
(BPW theory) appears a very good practical tool: it
simply requires shifts of reference atomic energies and
gives a MAD of 3.2 kcal/mol.

The LSDA-c3 model in its two-parameter version is
rather good (MAD of 5.8 kcal/mol). Its defining equa-
tions (Egs. 9, 10) have an interesting mathematical form.
They produce a sum of atom-in-molecule corrections,
with each correction roughly proportional to v/n;V;—the
geometric average of the number of neighbours around
atom i (n} 2 in Eq. 9) and the number of valence elec-
trons in atom i (V?, b = 0.455 ~ 1), which is akin to an
effective number of chemical bonds. It is not clear
exactly how this kind of result could arise naturally in a
first-principles correction to the LSDA, but the sim-
plicity and success of Egs. (9) and (10) hint at the pos-
sible existence of simple and gradientless, yet accurate,
functionals.
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